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ABSTRACT

Four di�erent data sets pertaining to the neutral atom environment at 1 AU are presented and discussed.
These data sets include neutral solar wind and interstellar neutral atom data from IMAGE/LENA, energetic
hydrogen atom data from SOHO/HSTOF and plasma wave data from the magnetometer on ISEE-3. Sur-
prisingly, these data sets are centered between 262Æ and 292Æ ecliptic longitude, �10Æ-40Æ from the upstream
interstellar neutral (ISN) ow direction at 254Æ resulting from the motion of the Sun relative to the local
interstellar cloud (LIC). Some possible explanations for this o�set, none of which is completely satisfactory,
are discussed.

INTRODUCTION

Due to the motion of the heliosphere at about 25 km/s through the LIC, the Earth passes upstream of
the Sun in the main neutral gas ow in early June of every year, about June 5 (day 156) when it is near
254Æ ecliptic longitude (Frisch, 2000). Several independent observations for both H and He including pickup
ions (Gloeckler and Geiss, 2001), direct neutral gas observations (Witte et al., 1993), and UV backscattering
(Lallement, 1996) have established this direction along with the resulting spatial distribution and kinematics
of the particles. In addition, the derived ow is consistent with UV absorption measurements in the light
of nearby stars (Bertin et al., 1993).

The presence of this well-established stream leads to the expectation that neutral atom data at 1 AU
would be symmetric with respect to the 74Æ/254Æ ecliptic longitude axis. However, a number of neutral
atom data sets at 1 AU, four of which are discussed here, curiously are not centered with this axis, but with
larger ecliptic longitudes by about 10Æ-40Æ, depending on the data set in question.

INTERSTELLAR NEUTRAL (ISN) OBSERVATIONS

Fuselier predicted prior to the IMAGE launch in March of 2000, based in part on earlier unpublished
work by Gruntman, that the Low Energy Neutral Atom (LENA) imager, which responds to neutral atoms
down to as low as about 10 eV (Moore et al., 2000), would be able to directly observe interstellar neutral
helium early in each calendar year. As shown in Figure 1, LENA did observe a signal in the Winter of
2000/2001 which, because it occurred at the predicted time of year and from the predicted direction, close
to the Earth ram direction, was interpreted as due to ISN.

Because the upstream direction, 254Æ, lies outside of LENA's �eld-of-view, for ISN to be observed di-
rectly by LENA they must be appreciably bent by the Sun's gravity downwind of the Sun, making it unlikely
that this signal is ISN hydrogen which is strongly inuenced by solar radiation pressure. Consequently, the
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Fig. 1. LENA spectrogram showing ISN signal. Fig. 2. ISN count rate versus day of year.

signal is probably helium, although LENA does respond to all species of neutrals over a wide energy range.
The peak interstellar neutral ux is expected when the Earth is directly downstream, on December

5. However, because the LENA eÆciencies are a strong function of energy and the expected velocity of
heavy ISN with respect to IMAGE exhibits a broad peak starting in mid-December, the maximum in the
observed neutral count rate should occur somewhere around December 15. So, following the appearance of
this signal, two groups on the LENA team independently used di�erent techniques to extract the signal and
track its rate versus time. The two groups reached the same conclusion, namely that the peak count rate of
the neutrals occurred about forty days later than December 5, in early January, as shown in Figure 2. Thus,
if of ISN origin, these observations do not seem to come from the same population of neutrals observed by
the Ulysses Neutral GAS experiment (Witte et al., 1992), through UV backscattering (Chasse��ere et al.,
1986; Vallerga, 1996) and through pickup ions (M�obius et al., 1985; Gloeckler and Geiss, 2001).

NEUTRAL SOLAR WIND (NSW) OBSERVATIONS

Figure 3 shows the annual variation of the neutral solar wind ux, which forms when solar wind ions
exchange charge with neutral atoms between the Sun and the Earth (Collier et al., 2001), observed by
LENA over the year 2001 (dashed line). There is a clear enhancement of about one and one half orders
of magnitude in the data occurring between about day 120 and day 250, although the Sun, and hence the
solar wind, is outside of LENA's �eld-of-view from about day 144 to day 230. When the center of the
enhancement is inferred from the rise and fall, its location is estimated to be on day 184.

The highest measured neutral solar wind ux is � 0:2% of the nominal solar wind ux, although the
upward trend may suggest a higher peak rate. The ux is based on the assumption that LENA responds
to hydrogen with an energy of 1 keV. However, the average solar wind energy is higher than 1 keV and
LENA's eÆciency may be higher at the higher energies. Furthermore, LENA may be responding in-part
to suprathermal particles or heavy atoms, which also will have higher eÆciencies. Considering this and
uncertainties in calibration, the observed neutral solar wind ux could be lower than that shown in Figure 3
by about a factor of four or �ve. Because IMAGE, except under infrequent extreme conditions, is in the
magnetosphere, there are no solar wind ions to suppress.

The neutral solar wind uxes outside of the period of enhancement have been interpreted as neutrals
generated by the solar wind interaction with interplanetary dust and the Earth's hydrogen exosphere (Collier
et al., 2002). The third main source of neutrals for solar wind charge exchange, interstellar hydrogen, which
has a higher density and will charge exchange more readily with protons than neutral helium will (Gruntman,
1994), is expected to have an annual periodicity due to the Earth's motion around the Sun. Furthermore,
unlike helium, hydrogen is relatively una�ected by solar gravity, being partially if not entirely balanced by
radiation pressure, so that the highest hydrogen densities are found in the upstream, rather than downstream,
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Fig. 3. HSTOF/EHA and LENA/NSW data.
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region. Recent evidence with SOHO/SWAN indicates a rather high photon pressure with �, the ratio of the
radiation to gravitational force, approaching one even during solar minimum (Qu�emerais et al., 1999).

Figure 6 of Bzowski et al. (1996) shows a model prediction for the annual variation of the neutral solar
wind ux at 1 AU over a solar cycle. Qualitatively, the model predicts a variation between one and three
orders of magnitude in the upstream direction, consistent with the LENA observations and prompting an
interpretation linking the LENA enhancement with interstellar hydrogen. However, the observed uxes are
over an order of magnitude greater than the predicted uxes, which are close to 104 atoms/cm2/s, and occur
about thirty days (or approximately 30Æ) later than the nominal interstellar neutral ow direction.

ENERGETIC HYDROGEN ATOM OBSERVATIONS

Figure 3 also shows energetic hydrogen atom data (solid line) from the High Energy Suprathermal Time-
of-Flight (HSTOF) sensor on SOHO published by Hilchenbach et al. (1998) (data from their Figure 6a).
They examined quiet day uxes of hydrogen atoms with energies between 55 and 80 keV and interpret these
uxes as coming from the heliosheath. K�ota et al. (2001) have argued that the HSTOF ENA observations
are also consistent with an energetic ion population source accelerated at CIRs in the inner heliosphere.

Like the LENA neutral solar wind observations, HSTOF is looking back towards the Sun and, like
LENA, HSTOF sees an enhancement in energetic neutrals between about day 120 and 250. However, unlike
LENA, HSTOF is not looking directly back at the Sun, but 37Æ o� the Sun-Earth line. When the data are
plotted as a function of the actual ecliptic longitude HSTOF observes (see Hilchenbach et al., Figure 6b),
there is a substantial shift, about 15Æ, between the peak ux and the nominal upstream/downstream axis,
although the statistical uncertainties are relatively large. This shift is apparent in the HSTOF long term
trending data shown in Figure 18 of Czechowski et al. (2001) as well. However, the uxes HSTOF observes
are higher by an order of magnitude than can be accounted for by the models considered by Czechowski et
al. Certainly an additional source of neutral gas, such as might be supplied by a secondary stream, would
bring model and observations into closer agreement.

WAVE OBSERVATIONS

Tsurutani et al. (1994) reported low frequency waves with periods near the proton gyroperiod at 1 AU
observed by the magnetometer on ISEE-3. The events are unusual because the interplanetary magnetic
�eld power spectrum at 1 AU is typically quite featureless, exhibiting a relatively smooth Kolmogorov ��5=3

dependence. However, during these events (see their Figure 3), Tsurutani et al. saw broad increases in the
wave power near the proton cyclotron frequency, atypical in the normal solar wind.
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Tsurutani et al. considered pickup of cold hydrogen neutrals as the most likely source of the waves and
list interstellar neutrals as a possible candidate. The dates of their events are distributed over a three year
period from 1978-1981 (see their Table 1). However, the day of year of these events falls into two clusters,
as shown at the top of Figure 4, which appear to be centered not with the upstream direction, but about
thirty degrees later.

In the event these wave observations are associated with elevated neutral uxes centered at an ecliptic
longitude somewhere between 262Æ and 292Æ, then a natural question is why would this wave activity only
occur in the regions of the neutral atom gradients. One possible explanation is that it results from Earth
crossings of the parabolic exclusion boundary (Holzer, 1977). For values of � > 1, hydrogen is unable
to penetrate to the Sun and the fobidden region forms a parabolic boundary, which, in analogy to the
magnetosheath, has an associated hydrogen sheath of substantially increased density. For a static boundary
and reasonable values of �, the Earth will traverse this sheath twice annually in the upstream direction (see
Holzer, 1977, Figure 4b). However, the boundary is likely irregular and in near constant motion, causing
multiple traversals and bursty activity during the appropriate times of year, as observed in Tsurutani et al.'s
events. In fact, examining Tsurutani et al.'s wave events, they do resemble, in the sense of having multiple
closely-spaced events, the traversals of boundaries such as the magnetopause and bow shock.

Of course, if the secondary stream population is very hot, only those particles in the distribution
with energies high enough to e�ectively penetrate to 1 AU while low enough to form a parabolic exclusion
boundary near 1 AU would be producing these waves. Note also that Holzer uses a value �=1.2, whereas �
may be substantially larger leading to higher energy particles forming the same parabolic exclusion boundary.

DISCUSSION AND CONCLUSIONS

Figure 5 shows all four of the data sets discussed in this paper on a single plot. The data have a
symmetry point substantially later than expected based on the nominal upstream direction but appear to
be consistent with a direction very close to the Galactic center at 267Æ. One possibility is that this may
be due to a secondary stream of neutrals which enters the heliosphere at an ecliptic longitude somewhere
between 262Æ and 292Æ. The wave data and the downstream directly observed neutral data suggest a lower
energy component while the neutral solar wind and perhaps the HSTOF data favor a component at higher
energies which can penetrate well inside of 1 AU. This implies that should this secondary stream exist, it
likely contains a wide range of neutral speeds, that is, it is very hot.

A natural question is what would cause such a stream and the answer is unclear at best, although there
are a couple other relevant issues that should be mentioned. First, it is interesting to note that the apparent
direction of the interstellar dust ow is shifted about 10Æ later in ecliptic longitude than the direction of the
interstellar neutral ow (Gr�un, 2000), although they are consistent to within a 1� uncertainty. The dust
distribution, however, is suÆciently broad so that it is also consistent with a wide range of ow directions.
Because dust can serve as a source of neutrals for charge exchange (Banks, 1971), there may be some
relationship between the interstellar dust ow and this possible secondary stream.

Second, if the heliosphere is tilted due to the inclination of an interstellar magnetic �eld, as suggested
by some simulations (Ratkiewicz et al., 1998) and illustrated in Figure 6, then perhaps the shift in the data
sets presented here is the result of this asymmetry.

Third, Lallement (private communication, 2002) has pointed out that evidence suggests that the he-
liosphere is extremely close to the boundary of the local interstellar cloud in the approximate direction of
the Galactic center, albeit with a huge uncertainty (Lallement, 1996; Lallement and Bertin, 1992). If the
next cloud in that direction, the G cloud (Linsky and Wood, 1996), has not already caught up to the LIC
(Lallement et al., 1990), between the LIC and the G cloud resides a hot ionized gas of temperature �106 K,
which corresponds to 150 km/s for protons. If the interface with this hot gas is close (we have only upper
limits (Red�eld and Linsky, 2000)), then, because of charge exchange between hydrogen and protons, hot
neutral H with characteristic speeds of about 150 km/s, perhaps higher, will penetrate the heliosphere from
the approximate direction of the Galactic center because of our proximity to the interface. In this scenario,
because the distribution is so hot, some ux of energetic neutrals (> 1 keV) may be observed owing towards
the Sun when the Earth is between the Sun and the Galactic center.

Fourth, the role of the Earth in inuencing 1 AU observations of extraterrestrial neutrals may not be
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fully appreciated. As just one example, because lower energy particles in the interstellar neutral distribution
are preferentially �ltered out, the remnant population at 1 AU will have a higher e�ective speed. The
Earth moves at vE=30 km/s. Thus, if the interstellar neutrals ow at vISN and the Earth is at an angle
sin�1fvE=vISNg with respect to the upstream direction, then the interstellar neutrals will ow exactly along
the Sun-Earth line in the frame of the Earth. Consequently, the axis of the focusing cone created by the
Earth's gravity will be aligned with the solar wind and will produce strong neutral density enhancements
along an extended solar wind path length.

Fifth, a closer look at the spatial distribution of pickup ions appears to be warranted (Gloeckler and
Geiss, 2001), with a shorter averaging window as used, for example, by M�obius et al. (2002). This treatment
appears to reveal evidence of primary and secondary streams during the period of the IMAGE data sets
(2000-2001). However, it must be borne in mind that the spectral form of the pickup ions resultant from a
fast and/or warm secondary stream may not have the same form as that which results from cold interstellar
neutral photoionization. The spectral form that is a cut-o� at two times the solar wind velocity results from
pickup of neutrals travelling slowly with respect to the solar wind.

In summary, multiple data sets exhibit a spatial structure that is aligned with a direction between
10Æ and 40Æ from the nominal upwind direction of the interstellar ow. This structure may possibly be
explained in terms of a secondary stream. It remains to be fully understood, however, how these data �t
in with previous measurements of neutral atoms, pickup ions and UV spectra within the heliosphere and
whether or not this interpretation is consistent with these observations.
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